Modeling images of natural 3D surfaces:
overview and potential applications

Abstract— Generative models of natural images have long been both the surface model and the rendering technique. However,
used in computer vision. However, since they only describe the the main contribution of this paper is to derive a complete gen-

statistics of 2D scenes, they fail to capture all the properties of ; ; i
the underlying 3D world. Even though such models are sufficient erative model for images of natural surfaces. After describing

for many vision tasks, a 3D scene model is needed when it come§he f_orvv_ard problem, in Secjtl(_)n I We detail a few potentlal
to inferring a 3D object or its characteristics. In this paper, we applications to computer vision using Bayesian inference,

present such a generative model, incorporating both a multiscale show preliminary results and discuss the related challenges.
surface prior model for surface geometry and reflectance, and
an image formation process model based on realistic rendering, II. GENERATIVE MODEL

that accounts for the physics of image generation. We focus on We first define a surface mod& which consists of a
the computation of the posterior model parameter densities, and

on the critical aspects of the rendering. We also discuss how to S€t Of 3D verticesv (geometry) forming a triangular mesh,
efficiently invert the model within a Bayesian framework. We and scalar albedos, one for each triangle. We assume that
present a few potential applications, such as asteroid modeling all the parameters are random variables governed by a joint
and planetary topography recovery, illustrated by promising probability distribution. The geometry model is described in
results on real images. Section A. It comprises a set of coefficients (wavelet
transform ofv) conditioned upon the roughness paramelers
~ andgq. The reflectance model is described in Section B and is
The model we study in this paper is intended to describe 3Dade of coefficientsy (wavelet transform op) of roughness
natural surfaces such as planetary or asteroid relief, as wellp@sameterg; we also define a model map and scattering
optical images of these surfaces, taken under different viewipgrameters:. The camera and light parameters are denoted
and lighting conditions. by ®. An image! is obtained fromS and ® by rendering,
Natural image statistics can be efficiently described by 2& explained in Section C. Any observed imagedepends
models, as shown in various studies such as [1]-[5]. These I and ® through a degradation model given in Section
image models are mostly bidimensional, and they captue The relationships between all these variables are given as
some of the characteristics of natural objects, such as scalgraphical model in Fig. 1, where each arrow represents a
invariance, spatial adaptivity and various roughness or regienditional density, and each leaf node a prior density.
larity properties. Within a Bayesian framework [6], they can

be used to infer the model parameters from an observation @A Surface model S

I. INTRODUCTION

a set of observations), thus providing estimates of the mode Obsorvation

characteristics. parameters
However, an image is not a simple representation of @/Vvemces (camerazoh)

natural 3D object, it is in fact a measurement, corrupted

blur and noise, of a 2Benderingof such an object. Therefore ®\

it is not appropriate, in general, to model an image direct a @

as a natural phenomenon, and there is usually no sim

correspondence between the inferred model parameters ang

surface parameters (the former are usually a complex mixti

of the latter), except in some simple cases [7]. Therefore t

imaging model should be taken into account. Furthermore, t

object model should relate to the physical properties of t

studied surface, such as shape, reflectance, roughness eta
We propose to build a full generative model that combines a , _ _ _

3D surface model with a realistc imaging process to descriff 1. Srebrial model o errehyof e vandon eriabies i he proposed

both the scene and the various observations of this scene. This

model is described in Section II; the surface model includés Multiscale surface geometry model

topography, reflectance and various hyperpriors, whereas thé&ractals have long been used to synthesize realistic looking

imaging model consists of an accurate rendering algorithpfanetary terrains, because of their resemblance to natural

followed by a degradation process. Our contribution consistsafbjects [1], [8]. From a qualitative point of view, they certainly
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exhibit similar statistical properties, such as scale invarian@ctual surface. These details are topologically located at the
We propose to derive a multiscale roughness model theatme "white” sites as the midpoints, of indgx

accounts for these properties, by building an appropriate

probability density function of the vertex variables wj =v; =B (V(vy)) (1)

In this paper, we are interested in modeling any kingithout lifting, the wavelet functions would not have sufficient
of surfaces, such as asteroids or entire planets, which greoothness properties, such as spectral selectivity, needed to
topologically different from flat open landscapes commonlyapture scale properties of natural surfaces. Therefore we use
used in terrain simulation. For this purpose, we choose fiee lifting scheme [12], consisting of adding to each “black”
use a subdivided mesh [9] as the topological support.of vertex (indexk) a linear combination of the nearest wavelet
On each site of this support lies a 3D vertex variable. Thietails at the "white” sites (index). We chooser = 3/4.
support is semi-regular, since we start from a root mesh of
fixed connectivity (such as a hexagonal grid in the planar case, Vi < Vp+ T Z W @
or an icosahedron in the spherical case), then we subdivide it g~k
regularly by recursively adding a vertex between each pair ofFinally, the wavelet transform is performed by recursively
existing vertices (see Fig. 2). applying Eqg. (1) to the "white” sites then the lifting at the

"black” sites, in the reverse order from the subdivisiow,

times. The result isN levels of details, plus one coarse
E> approximation of the mesh at subdivision leve N. It is
simple to invert, starting with the lifting step and replacing

Fig. 2. Subdivisi h d to brod . b _t_the addition by a subtraction in Eq. (2), then inverting Eq.
1g. 2. ubdivision scheme used to produce a finer mesn from an existi . . . . . .
triangular mesh: a new vertex (white) is added between each pair of 2 verti WhICh consists Qf .predlctln-g the mldpomt_s by U_S'_BJ
(black), using a prediction or interpolation rule. and adding the coefficients;. Filtering the detail coefficients

. i . o Provides a simple mesh smoothing technique [13].
A possible way of studying fractals is to look for statistica 2) Local scale and direction:The wavelet functions are

self-similarities. Simple probabilistic estimators can be us%tually defined in a topological space, which is semi-regular,
instead of looking for repetition and scaling of particulagng o not reflect the local geometry of the studied object.
geometrical shapes. If there is a scale invariant probabilify s the coefficients encode absolute variations of the ge-
function fitting to the data, the object is said to be statisticaltymetry between two approximation levels, regardless of the
scale invariant, and we can call it fractal. Usually a spectrgl,e of the triangles in the mesh. However, a given variation
representation such as the Fourier transform (when availalfghs not have the same physical meaning for different point
gives access to the distribution of the average size of objgfdhsities. To account for that, we define the notion of local
features as a function of the scale, regardless of the locatigpgie This scale has nothing to do with the (integer) levels
For perfect spherical objects, spherical harmonics providesfihe transform: at a given level there is a mixing of various
powerful spectrum analysis tool. However, the surfaces Weajes depending on the local mesh density. The local scale
model have an irregular sampling in general, since the radi _ is defined so that we can account for local deformation
variations are large w.r.t. the object radius, therefore we pref§taach triangle (see Fig. 3 is the length of the edge, v,
to use a more flexiblg tool such as wavelets in order to accgssihe approximation meshyj (is the midpoint of (a, b)), {
the scale of geometric features. is a distance fromv; to a parent of order 2, and the angle
1) Wavelet transform of a surfacédow that the topology ., encodes the skew of the triangle. The scale is actually an

is properly defined, how do we deal with the 3D geometryR,erage of the scales of both triangles sharing the same edge.
The key point of this subdivision scheme is the new vertex

prediction, whic_h is.achieved by interpolation. The simplest oL (3 L—Q(cosa fsma)+ 4) —-1/2
is to take the midpoint of the edge, but leads to an unwanted 4 12
piecewise planar surface. Therefore we prefer using a smooth
scheme [10], involving 8 parents for each new vertex instead
of 2. We use this scheme in the regular case (both edge
vertices have 6 neighbors), otherwise we use another one [11].
If V(v;) denotes the 8 neighbors of a new vertey the Va O Vo
prediction function is denoted bB,; (V (v;)). . . L N

A subdivided mesh at level is given. The basic idea s 76, % 5 telomater o e esh saur & viveil confien s e
to split the sites into two interleaved sets: the topological
midpoints and their closest parents (respectively white andLike the approximation coefficients, the wavelet details are
black points on Fig. 2). Then, the former are predicted from ti8D vectors. The former have an obvious meaning, i.e. the same
latter usingB;. The difference between actual and predicteobject at a coarser resolution, whereas the latter embed details
vertices gives us theavelet detailssince it represents at eachboth along and orthogonal to the surface. To provide a really
level the difference between a smooth approximation and theeful transform, we have to separate these two components,

®3)




respectively the real geometric details (variations normal to teeoothness prior. We define a simple uniform prior on the
surface, denoteav; ) and the surface sampling irregularitiesscaled coefficientwg /s; with the smoothness parametgr
(variations parallel to the surface denot@tﬂ).

3) The surface modellUsing wavelets on meshes we can
perform the multiresolution analysis [14] of a surface for any
topology, defined on a subdivided mesh. We have used such
a representation of the asteroid 433 Eros; the geometry wadVe express the prior distribution of the verticBév) in the
given by the NEAR mission [15]. This way we have checkewavelet domain instead of the vertex domain Byw), and
that this object is statistically scale-invariant. As shown in Fighe conditional independence leadstw) = P(w+)P(wl ).
4, the amplitude spectrum, estimated by the spatial averagé'hen the verticesr are obtained by inverse transform wf
of the amplitude of the geometric detaits|w | >, can be
modeled by a scale invariant law whe#dg is a constant:

P(wi|y)ocexp | =7 |[wl/si]” (6)

J

log <|w;|>=~ q log(s;) + log Ao 4)

Here, the local scale is related to the local spatial frequenc
f by s=1/f. The scale invariance implied(f) = 4 f~9,
which describes the so-called “1/f” noise, a widely used mod
for natural objects [1], [3].

Fig. 5. Surfaces generated from the fractal model with 1.1 and uniform

2 0 . : ; ; : roughnessX (left: A=0.5, middle: A=1.5, right: A=5). We have used the

£ . it L "433 Eros" + | renderer described in Section II.C. with identical camera and light directions.
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; 4r Bl . 7 Images of natural surfaces are the product of albedo and

g S g, Trbrhe 7 shading. We propose to model the albedo field using existing

- - + - . .

s 3 . . . . “***tm natural image models [17], [18], which capture both the scale

2 0 1 2 3 4 invariance and the spatial adaptivity via a multiresolution ap-
x = - log local scale proach. The shading is modeled through a reflectance function

Fig. 4. Log-log plot representing the average size of the wavelet details of thethat d(-?-pends on the surface geometry (verticeand the
asteroid 433 Eros as a function of the local scale, illustrating the statisticatjpservation parametefd.

scale-invariant behavior of the surface. To be more realistic, a model map should be included to
This can be seen as a probabilistic model of the wavekecount for the spatial variability of the terrain in real-world
coefficients. It is closely related to a fractional Browniasurfaces. This map consists of a discrete random variable
motion [16], used to describe natural images. We extend tfiig each vertex of indexj, and represents a local class of
kind of model to natural surfaces (see Fig. 5). This waveltgrrain (such as rock type, water, forest...); each class relates
transform, like more traditional 2D wavelet transforms, helge a different albedo and reflectance function. More precisely,
decorrelate the vertex random variables since the surfdoe each value ofm, we have a multiscale albedo model of
exhibits a self-similar behavior. Moreover, it conserves thgrior parameterg, governed by the conditional distribution
number of coefficients since it is critically sampled, therefor&(e | m), and a parametric reflectance functighi with the
we can reasonably assume that each normal wavelet degaiiresponding conditional parameter dendit | m).
coefficient can be accurately modeled as an independenthus we define a hierarchical model as follows: there is a
random variable. To simplify, we use a zero-mean Gaussidatior distribution of the classes denoted B(m), then we
We build the joint distribution according to Eq. (4), and wéave conditional densitie®(c [m) and P(x|m), then the
define)\; as local roughness parameters: albedo modelP(p|€) and the reflectance modér.
Let us focus on the albedo density. We can derive a
,gq multiscale model based on wavelets on a mesh, inspired from
Z Aj 8 ®) the geometry model. To ensure the physical constraints on the
albedo, let us first define a modified albefe R such that
Thus, we construct apatially adaptiveractal model applica- p = p(p) and p € [0,1]. We chooseu(z) = (1 + e~ %)~}
ble to a broad range of natural surfaces, whose properties wigch is a bijective sigmoid, so that we can easily use the
generally spatially varying. density of p instead of the density gb. Therefore, we need
On the other hand, the parallel coefficients are related to use the Jacobian’:
to the smoothness of the surface sampling and their value - 1y~
should not have any influence on the actual object shape. Plole)=P(ple) 1'(p) 7)
A model involving them can be considered as a samplinffe propose to use the same analysis scheme as in the previous
regularity prior, whereas the model of Eq. (5) acts as a surfasection to derive albedo wavelets. On the mesh, we can first

P(wt |, q) xexp



define the albedos on the same topological sites as the verti¢astor /,, encoding the exposure time and various transmission
then we get one albedo per triangle by averaging over thda®tors, as well as a geometric attenuation factor.

triangle vertices. This way it is straightforward to apply Egs. A

(1) and (2) using the scalar albedos instead of 3D vertices, in I, = K, Z Wy (10)

the prediction scheme as well as in the lifting step. To make [EV(P)

a physical interpretation of the wavelet coefficients, we keee irradiance is given by multiplying the direct light source

the same local scale estimatgrelated to the local geometryintensity 7*, the albedap and the shading functiogi, which
of the mesh. We denote the scalar albedo wavelet details dpends on the surface orientation (triangle normaé),

wj; their density is then given by: and the camera and lighting directions and u*, through
) the incident angle®, ¢ and the viewing angle§2, ¢2

Plwle) eXP(— Z€j (wj/s5) ) (8) as defined on Fig. 6. There is also a non-directed light of

J intensity I° that accounts for ambient light and interreflections.

The final albedos are thus obtained from the coefficients aboliee corresponding shading function is de_no_p@daqd only
by inverting the wavelet transform, averaging to get one albeéépends on the triangle normal and the viewing direction.

per triangles”, then remapping intd0, 1] by the functiony. N
. L2 = p® (10202, 08) + 1" F(67 67,02, 08)) (1)

. ] In the following we assume a Lambertian model, but this
We need to produce an image from a fixed surface modg|n easily be extended to more realistic parametric reflectance
S and a set of camera and light paramet€s (this is functions as proposed by Oren & Nayar in [20]. Then we

calledrenderingin computer graphics). We assume a pinholgimply havef = cos#> = n2-u* and f° becomes a constant:
camera model, which is a simple way to perform perspective

projection, and for the light both a point source at infinity L =p® (I°f°+ I*n® - u*) (12)
and an ambient componer@® contains both internal camera
parameters (such as pixel size and focal length) as well

C. Accurate rendering with derivatives

" X : . Light
as external parameters (position and orientation) and light n® ut! direction
parameters (direction and intensity). The major challenge is Camera
to compute accurate images, as well as their derivatives, i.e. direction A2

how pixel intensities vary with changes to the surface and the
observation parameters. The derivatives are required to per-
form the reconstruction via any gradient-based deterministic v“3
optimization algorithm.
We denote byl,,(S, ®) the rendered intensity for the pixel
p. This intensity is a product between surface albedo and
local shading, which depends on geometry, lighting conditions, MY
reﬂeCtar_lce functions, .and_ Cam(.ar.a pOSItlpn and ereqtat|%_ 6. lllustration of the light and camera directions and corresponding
Computing accurate pixel intensities requires working in thegles for a triangle of the 3D surface.
object space, which means performing visibility determination
for each pixel using computational geometry. This is the on
way of obtaining an image that precisely corresponds to a
model, which is critical in some cases (see Section IlI-B).
1) Discrete intensity computatiorvVhen there are no oc-
clusions or shadows, the contribution of a triangleto a
pixel p is the area of the triangle/pixel intersection polygo
A%, times the irradiancé.“. We denote this contribution by
the fractional poweiV,>:

2) Accurate visibility determinationWe have developed a
t pixel integration method that computes, for each pixel
p, the exact visible areaﬂpA of all the projected triangles
A that overlap this pixel. It is an object-precision technique,
since the size of the pixels does not affect the accuracy. This
is made possible by combining bucket sorting (to build a
fist of triangles for each pixel) and depth buffers (to quickly
reject totally hidden triangles), and by restricting the complex
computations to the pixels where they are really required. This
WA — AL D Q) is used for both hidden surfaces and shadows, since shadows
P P are surfaces hidden from the light source.
When there are occlusions, the polygon is processed for hiddeWe notice that partial triangle occlusions occur only along
surface removal, as explained in paragraph 2 and Fig. 8. curves (projected ridge lines), thus dramatically reducing the
Here the irradiance is assumed to be piecewise constant. Ninber of pixels of the image that require complex geometric
could use a more accurate piecewise linear model (cf. Phargmputations to perform hidden surface removal. Outside
model [19]), as it will be discussed in Section III.C. ridge lines, triangles are either fully visible or fully hidden.
The total intensity for pixep is obtained by summing the First, we determine the occlusion map, by rasterizing each
fractional powers over the triangles intersecting the pjxel edge of the mesh that defines a ridge, as follows. The normal
i.e. the setV/(p), then multiplying them by a space-varyingto a triangle is used to test whether the triangle is front-facing



(n®-u* > 0) or back-facing. A ridge segment is defined ataken into account accurately, at sub-pixel level. This is made
an edge separating a front-facing from a back-facing trianglggssible by reusing the technique described above.
such that the front-facing one is the closest to the cameraFirst, an orthographic projection along the light direction
(otherwise it is a valley), see Fig. 7. The occlusion map is used to determine, for each triangle, the list of occluding
defined by the set of pixels that intersect the ridge segmentisangles. Then, for each occluded triangle, the area not in
shadow is determined by subtracting the occluding triangles,
projected using a different projection this time (along the light
direction, but onto the shadowed triangle).
It is also possible to compute shadows at a triangle level, by
back determining for each triangle the area visible from the directed
light source (as we do from the camera for hidden surface
removal). Then we define a shadow rate for each triangle as
back the visible to total area ratio, which multiplies the second
term in Eq. (12), so that triangles in full shadow will only

Fig. 7. Letu,jqge be the oriented edge (according to the front-face triangle? . ) . . . . .
and the ridge normal the averaggiaze = (Nfont + Nback)/2. The front-  receive ambient light. This approximation gives very good

facing triangleAfons is closestto the cameras |uyidge, u*, Nrigge| > 0. results when the triangles are small.

4) Computing the derivatives:The knowledge of the
Then, we perform occluded surfaces removal only for trH"lerivatives of the image intensity w.r.t. any parameter of the

pixels in th? occlusion map, which typically represent less tth;'énerative model, such as the surface or the camera and light
1% of the image. " barameters, is highly valuable. First, efficiesieterministic
The_ principle of .V'S'ble surfape determ|nat|on. relies oEptimiza’tiontechniques require derivatives to estimate model
recursively subtracting all the triangles that are in front arameters from observed data. Second, they can help com-
a'particular triangle, thus' ob'taining a polygon,.as shown e theuncertaintyof the generated mod,els by providing a
Fig. 8. Such methods exist in _comp_uter graphics [21]’ [2_ aussian approximation of the model probability distribution.
but they do not perform recursive triangle subiraction USIGoreover, the intensity derivatives can be used to compute the
large triangular meshes. In addition to the geometry of ling,;-a| fiow related to changes in the vertices or camera pa-
segments we use the topological connectivity of the mesh f eters, thus enabling us to aeition blurto the rendering
design an algorithm that is robust to vertex and edge aliggéheme_’
ments occurring when intersecting adjacent triangles with a5 pasic idea of the computation is the chain rule. Al
polygon. The polygon areas involved in the fractional intensiwe need to know is the derivative of any function w.r.t. any
computation have to be determined, as well as their derivativ driables this function directly depends on: for instance, the

we keep_ track of th? orig!nal mesh vertices that ge nerate 6.‘" reojection of a vertex only depends on the camera parameters
geometric intersections mvolyed in t'hg subtrgctlon algorith d the 3D vertex: a fractional areﬁ% only depends on the
(Wh',te vertilces on F!g. 8). This way, it is pos&b!e to comput ojected vertices of\ and the occluding triangles. Let us
the intensity de”_"a“"? w.r.t_. any vertex, even in the case Lnote byU andV arbitrary vectors (such as vertices, albedos
complex occultations involving many vertices. or areas). If we assume that we haveectorsZ; functions of
U, and thatV is a function of allZ;, then the corresponding
derivatives are multiplied according to the chain rule to obtain
the derivative ofV w.r.t. U:

ov [0V ] [0Z;

{GU} _; [azi] [aU] (13)
This can be extended to a full derivative tree, encoding to the
hierarchical relations between all variables in the rendering
procedure, from(S, ®) to the intensitied,,.
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e e i D. Observed image formation model

@ Triangle A In principle, the observed image is formed in 3 steps:
O Occluding triangles 1) the projection onto the image plane, which produces a
piecewise constant image since we assumed that the irradiance

Fig. 8. For a pixep, illustration of the visible part of the trianglé (dashed iS constant over triangles; 2) the convolution by the point
polygon), of aready". It is obtained by subtracting all occluding trianglesspread function (PSF) of the instrument; 3) the integration
from the triangle/pixel intersection polygon. over each pixel. However, an equivalent model consists of

3) Computing shadows:Shadow boundaries carry veryreplacing steps 2 and 3 by the convolution with a global PSF
important information on the 3D, independent of any albedocluding both instrument and pixel PSF, then point sampling
or reflectance estimation errors. Therefore they have to be a rectangular grid.



for deterministic relations between variables:
P(X,S,09)=P(S)P(O)P(X|I(S, ©)) (15)
P(S) = P(q)P(\)P(y)P(w* | g, ) P(w! | 7)d(v—W~'w)
x P(m)P(r | m)P(e|m)P(w]|e)d(p—p(Ww)p' (W lw)

All the densities involved in the equation above have been
defined in Sections II.A and 1.B. We give an example of
simulated observed image in Fig. 9 for a known surf&ce

and parameter®. We show simulations from the geometr
Fig. 9. A simulated observed image (blurred and noisy rendering) of the P 9 y

asteroid 433 Eros surface observed during the NEAR mission (3D modBiodel in Fig. 5 (assuming uniform albedo).
from the NASA Planetary Data System) [15]. Uniform albedo, Lambertian
reflectance model, ambient/direct light ratio 10%, Gaussian blur (width 2 [Il. POTENTIAL APPLICATIONS AND CHALLENGES

pixels) and Gaussian noise (variance 1% of the max. image intensity). In many cases, computer vision can be seen as the inver-
sion of a generative forward model. When such a model is

If we make the assumption that the global PSF can @éobapilisti_c, a natural way of perfor_ming the inversion is yia
well approximated by a piecewise constant function, mad@yesian inference [6]. Basically, it consists of computing
of linear combinations of the pixel PSF, then steps 2 and@ Posterior density of the variables of interest, which is
can be swapped, and the convolution can be performed byrgportlonal to the joint denSI_ty _deﬂ_n_ed by the generative
discrete filter denoted, after performing the pixel integration Model. In general the full density is difficult to compute, and
as explained in the previous sections. Then, we simply adB@€ Prefers to estimate its maximum, or its mean. Whenever
discrete convolution step after the rendering, denotedy. possible it is also.usef.ul to estimate the covariance matrix
The proposed rendering technique does not produce aliasmgt_he variables, since it represents the uncertainty on these
artifacts since it simulates the image formation process (md&yiables. _ o
fast rendering algorithms produce aliased edges, since they Ne model presented here can have multiple applications:
rasterize triangles without performing any pixel integration)We can try to estimate the surface geometry, the albedo map,

The deterministic image formation, including both renderin e reflectance map, the scattering properties and the fractal
and degradation by blur, can be summarized as follows: imension of the surface, etc. We can also estimate the obser-

i ) . vation parameters to perform accurate camera calibration, PSF
« Project the surface vertices onto the image plane;  egimation, light calibration, etc. Estimating the reflectance
« Determine the visible areasof each triangle, for each ma, 1, consists of performing albedo classification. It is
pixel of the image (paragraph C.2); very important to understand that the classification should be
« Compute the shadowsor each triangle (paragraph C.3);performed on a physically meaningful terrain reflectance, not
- Compute the irradiance for each visible triangle by o jmage intensities which are the product of both reflectance
using a reflectance model (Eq. (12)); and shading. The proposed model should help carry out such

- Form the intensity I for each pixel by combining visible 5 ¢|assification since it clearly separates these two quantities.
areas and irradiance (Egs. (9)-(10));

« Blur the image by convolution with a discrete PSF.  A. Surface recovery from multiple images

So far, we have only described the deterministic part of the Surface recovery consists of inferring the 3D surface model
image formation. The intensity measure in the camera send@f the reflectance map from a set of images. As seen from
is a random process, because of the pixel noise (mainly di}¢ generative model the complex interplay between surface
to photon, readout and thermal noise). We assume it can 3ometry and reflectance maps cannot easily be inverted.
modeled by a stationary white Gaussian noise of variarjce There does not exist a unique relation between an observed

This enables us to write the conditional density of af"@ge and the underlying 3D object. However, using multiple
observed imag&, given the rendered intensify This density IMages helps constrain the solution to the inverse problem.

is also the likelihood of the paramete(S, ©): Moreover, the use of priors such as the ones we describe in
this paper further constrains the solution, acting like a regu-
(X—H*I(S,G))Q Iarizatic_)n_process. Then surface inference becomes possible,
p(X | 1(S, @)) xexp [ — Z > p (14) as preliminary results have shown.
» 20, By restricting the observation parameters (camera parame-

ters and light direction) to avoid shadows and occlusions and

The hierarchy of the variables is shown in Fig. 1: each arralve model to a height field, we have shown that even when

represents a conditional density, and each leaf node a dens#ing a simplified version of the accurate renderer described
encoding the prior knowledge about the related parametir.this paper,accurate 3D reconstruction is possible from
Thus we have the full joint density whe —! denotes an both simulated [23] and real dataWe have also assumed a

inverse wavelet transform and the Dirac distributiérsecount Lambertian scattering model. A conjugate gradient algorithm



was used to maximize the posterior density given all the E
observed images, with derivatives computed as explained in *
paragraph 1.C.4. %

A physical model of the Duckwater, Nevada, area was
constructed from the USGS digital elevation map. A CMOS *°
panchromatic camera was used to image this model in sunlight =
(see Fig. 10). Camera pose and internal parameters were ",
determined using the background checkerboard, and the sui 8o
angle was measured using a sundial. The inference started witl
a level surface, and converged to an estimate that is close tc
the original model (see Fig. 11): we obtained a maximum,
error less than 15mm with a 2m distance between camera®
and model. No existing stereo reconstruction method gave e
acceptable results in this case. 80

We have done another experiment with a spatially variable 7
albedo, by painting the same physical model mentioned above e
(see Fig. 12). The same inference procedure has been usel 5,
but this time the albedo was allowed to vary. The inferred 7o
surface geometry shows RMS errors between 1 and 2mm, anc
maximum errors usually less than 10mm, which is better than
in the constant albedo case. The results are shown in Fig. 13
The albedos look acceptable but their precision can not be
guantified, since they have been added by hand (there is )
ground truth).

Having a textured surface obviously helps reconstruct the
3D geometry. However, we have noticed some interaction
between albedo and geometry, where abrupt albedo differences
generate false slopes. To a lesser degree, the same problem oc-
curs with extended albedo differences: smooth albedo variation
generates shallow slopes in the heights.

We have demonstrated the feasibility, and the reduced com-
putational complexity, of the posterior density optimization
using intensity derivatives w.r.t. model parameters, in the case
of height fields. By using wavelets on subdivided meshes
as explained in Section Il.A, it should be possible to infer
objects of arbitrary topology such as entire planets, or aster-
oids. We have to investigate various ways of performing the
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Fig. 10. One of the 16 observed images in our constant albedo experimeng. 11. a: estimated geometry mode; original topography. The units are
showing the checkerboard and the sun dial used for sun calibration. millimeters. 1: 3D view of the height field: = f(x,y); 2: contour plotz =
const, with contours every 10mm.



optimization, for instance allowing the vertices to move in any
direction, or constraining them to move along the local surface
normal. When working in arbitrary topology, the initial mesh
has to be deformed to fit the data. There are multiple solutions
corresponding to various ways of arranging sampling points
on the same surface. The mesh regularity prior described in
this paper needs to be added to facilitate the optimization and
improve the sampling regularity of the surface.

The generic model-based vision approach presented here
avoids most of the shortcomings of existing methods in surface
recovery, such as shape from shading [24] and shape from
stereo [25]. The former is difficult to apply when the albedo
is spatially variable, while the latter usually produces a sparse
point set as a surface estimate. We can reconstruct continuous -
surfaces from multiple images, using different viewpoints and
various lighting conditions.

Fig. 12. One of the 8 observed images in our variable albedo experiment.

300

B. Super-resolution

Nothing prevents us from increasing the model resolution b 3
arbitrarily, thus achieving so-callesiper-resolutionHowever, 700
there are some practical limitations such as the cutoff fre-
guency of the optical system, and the limited amount of (noisy) s
data. We need to make certain that the design of the generative
model does not bring any further shortcomings. 600

First, when surface triangle projections on the image plane
are smaller than the pixel, which happens with increased
surface resolution, computing accurate intensities in the object
space is essential. Classical algorithms in computer graphics e
can not be used, because they perform image-based computa- ,_
tions which are too approximate in this case. That is why we
insisted on building an accurate rendering algorithm. w0

Second, the blur model shall preserve the spatial information
of the high-resolution surface. For instance, a small projected s
triangle entirely contained in a pixel should produce a slightly
different rendering when moved within the pixel. This is =@ =
difficult with the current integration scheme which computes

the area of visibility polygons; we believe it would be made _ ] _ _
13. a: inferred albedo field (black=0, white=1l: inferred geometry

possible by al?? computing the first Ord,er moments_’ becad;%del;c: original topography. The units are millimeters. The topography was
they are sensitive to the polygon location, even with smalndered using Matlab, with the same color maps and limits, emphasized by
a directed light.
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